

The mission of anacision

[ˈænəˈsɪʒn] analytics + decision

Our mission

We help to make better decisions with intelligent data analysis.

Every day GBs of sensor data are collected centrally

Predictive Maintenance: Predict necessary maintenance activities and avoid unplanned shutdowns

Predictive Maintenance Strategic Approach

Reactive Maintenance

"Run to Fail"

- No data collection
- Large spare parts inventory
- · High cost of downtime

Accepted method for low risk, low impact equipment

Preventive

Time Based

- No data collection
- Large spare parts inventory
- Low cost of downtime
- High maintenance spend

Time/OH as decision criteria

Condition Based: Monitoring

- Data aquisition/archiving
- Equipment specific
- Static equipment thresholds
- Experts for interpretation

Alarm for instant reaction

Condition Based: Diagnostics

- Data analysis
- Component specific
- Expert systems/software
- Experts for interpretation

Planning of distinctive actions

Predictive Maintenance

Predictive Analytics

- · Dynamic thresholds, gradients
- Dependant on parametric models
- Scalable, "fleet learning"
- Not time specific

Prognostics

- Statistical prognosis
- Non-parametric
- Scalable, "fleet learning"
- Time specific, risk based decision support

Early warning of emerging issues

Explicit time frame until outage

Predictive Maintenance Strategic Approach

Predictive Maintenance

Predictive Analytics

- Dynamic thresholds, gradients
- Dependant on parametric models
- · Scalable, "fleet learning"
- Not time specific

Prognostics

- Statistical prognosis
- Non-parametric
- Scalable, "fleet learning"
- Time specific, risk based decision support

Early warning of emerging issues

Explicit time frame until outage

Pattern recognition

- Sensors detect the condition of plant components
- Search for patterns in the sensory data that lead to failures
- Only known maintenance cases can be found
- In any case, sufficient data must be available

Continuous Monitioring

- Sensors detect the condition of plant components
- Create a model to detect unhealthy states
- Not limited to known maintenance
- Impact assessment partly more difficult

Reduce maintenance and reduce maintenance costs

Avoid failures and reduce maintenance

Our approach to continuous monitoring of the health of industrial plants

Goals

- Continuous measurement and interpretation of the health of industrial plants
- Automated early indicators for unhealthy developments
- Reduced maintenance costs and reduced plant downtimes

Approach

Combination of expert knowledge and sensor data to predict unhealthy states

From expert knowledge to dependency models

- // A high number of potential correlations were identified, but
 - some correlations can be spurious correlations resulting from a shared influence
 - statistical models can be unreliable in case of many highly correlated predictors (multicollinearity)
 - → The dependency matrix has to be thinned out in order to generate reliable and expressive models

From influence matrix to linear regression models

Dependency Matrix
Experise on physical dependence of senses and phonocontrol configuration of the sense of senses and phonocontrol configuration.

The sense of t

// Models are generated dynamically based on defined dependencies in the influence matrices

// A linear regression model for the variable Y is defined as

$$Y = \beta_0 + \sum_{i=1..p} \beta_i X_i$$

with predictor variables X_i , constant β_0 and coefficients β_i for all p predictor variables ("X" in dependency matrix)

Example: Temperature

$$Temp = \beta_0 \\ + \beta_{Pressure} \cdot Pressure \\ + \beta_{Ambient\ Temperature} \cdot AmbientTemperature$$

Linear regression model representing "healthy"

Linear Regression Model

Anomaly Detection

Rolling Regression

From real-time sensory data to continuous evaluation of health state

Overview of the health status of one plant

an **EXXETA** company

Project setup and lessons learned

Customer has analyzed a large number of standard solutions available on the market without success.

Key success factor:

Customized Solution with continous exchange between data scientists (anacision GmbH) and domain experts (customer).

Summary

Continuous monitoring can provide elementary advantages over pure pattern-based procedures

Easy to transfer to other machines and industries

Proofed in various projects, among others in a German DAX Company

Contact person

Rico Knapper
Chief Data Scientist

Fon: +49 152 22649878 rico.knapper@anacision.de

anacision GmbH

Albert-Nestler-Straße 19 76131 Karlsruhe Mail: info@anacision.com

anacision.com

